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Large Hadron Collider
A few words about LHC

Protons inside the beams are arranged in

bunches spaced of 25 ns, and are made to

collide corresponding to the positions of four

particle detectors:

• ALICE

• ATLAS

The LHC consists of 27-kilometre ring in which

two high-energy proton beams (or ion
beams) travel in opposite directions at close

to the speed of light.

• CMS

• LHCb
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The Large Hadron Collider (LHC) is the world’s largest and most powerful
particle accelerator. Fired up for the first time on 2008, it is the latest

addition to CERN’s accelerator complex.



The LHCb experiment
Physics program and detector

The Standard Model divides elementary particles into two
families: quarks and leptons. Both the families appear in six

different flavours, each of which with different masses and

quantum numbers.
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The Large Hadron Collider beauty (LHCb) experiment is dedicated to
heavy flavour physics, namely the study of heavy quarks (c and b). Its

primary goal is to look for indirect evidence of New Physics in CP-violation
and in rare decays of b- and c-hadrons.

The LHCb detector is a single-arm

spectrometer with a forward angular
coverage approximately the range

10÷300 mrad. The LHCb sub-detectors

can be conceptually divided into:

• Tracking system

• Particle Identification system



The LHCb experiment
The spectrometer layout
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Magnet

Tracking stations

VELO

Tracking system

The LHCb experiment
The spectrometer layout
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Muon system

RICH detectors

Calorimeter system

Particle Identification system

The LHCb experiment
The spectrometer layout



The LHCb experiment
Particle Identification

RICH detectors

Calorimeter system

Muon system
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RICH detectors

Calorimeter system

Muon system
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The PID variables* result from the combination between tracks and the
sub-detectors responses. Exploiting different physics processes, one can

compute several likelihood ratio (DLL) between particle hypotheses for
each reconstructed track.

The LHCb experiment
Particle Identification variables

ProbNN

Combined DLL

Better ID: pions, kaons, protons

Compare rings expected

from the track parameters

to hits

Better ID: electrons

Check consistency of

clusters of hits with tracks

Better ID: muons

Check consistency of

tracks of hits with tracks

* The PID variables are defined for each long-lived charged particle traversing the detector (e, μ, π, K, p).



The LHCb experiment
Upgrade I
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The Upgrade I of the LHCb experiment is currently in commissioning,
exploiting the stop of data taking for the Long Shutdown 2 (2018-2021).

The LHCb Upgrade detector will operate starting from LHC Run 3, and will

allow to reach unprecedent accuracy.

90%
detector
channels
replaced

fully
software
trigger
system

x 2
selection
efficiency

x 5
instantaneous

luminosity

x 10
data

samples
size



The LHCb experiment
Simulation

Matteo Barbetti
12.06.2020

9 of 35

Simulated samples play a key role for the whole development of the

upgraded detector. They are also fundamental for physics analysis,
contributing to the precision of physics measurements.

Particle simulation

Gauss

Digitization

Boole

Generation
Pythia

Decay
EvtGen

Propagation
Geant4

Particles directly 

producing in pp

collisions

Heavy flavour 

decays including 

dynamics 

(matrix elements)

All radiation-matter 

interactions 

occurring 

traversing LHCb

Full Simulation

Boole produces a 

data format equal to 

the one of true data. 

The output is then 

ready to be injected 

to the rest of the 

LHCb software
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The LHCb experiment
Computing requirements

x 10
simulated
samples

size

Since the upgraded Trigger will allow to increase the

integrated luminosity by a factor ten, also the simulation
processing needs a similar improvement in order to achieve

the highest possible physics accuracy.

Despite the new Trigger will

consume fewer computing

resources, pursuing a Full

Simulation approach is
unsustainable with respect

to the computing budget

available. Adopting faster

simulation options will be

necessary:

• Fast Simulation

• Ultra-Fast Simulation
Full approach

100% / 0% / 0%

Baseline

40% / 40% / 20%

Aggressive fast model

30% / 50% / 20%

Full / Fast / Ultra-Fast simulation
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The LHCb experiment
Fast Simulation

Simulating the propagation of the generated particles through the
detector is the hardest step of the entire simulation chain, consuming

more than 90% of the event production time.

Faster solutions can be obtained reproducing the experimental setup,
and hence the radiation-matter interactions, only partially:

• disabling specific processes (e.g. Cherenkov effect)

• simplifying the geometry (e.g. removing sub-detectors)

• re-using the underlying event (e.g. soft QCD processes)

Similar approaches allow the LHCb Collaboration to meet the demands

of Physics Working Group for specific analyses, and are named Fast

Simulation.
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The LHCb experiment
Ultra-Fast Simulation

The main difference between the Full and Fast

simulations is that the former computes all the

radiation-matter interactions within the detector,
while the latter only a part of them.

Ultra-Fast Simulation speeds up further the
production of simulated samples, renouncing to

reproduce the radiation-matter interactions, and

parameterizing directly the high-level response of
each sub-detectors.

The effect of the detector and of the reconstruction

algorithms is encoded in parametric formulas or

non-parametric predictions.

Among non-parametric solutions, methods based

on Generative Adversarial Networks (GAN) have
proved to be very promising.

RICH response

Full Simulation

Ultra-Fast 

Simulation

RICH Differential Log-Likelihood



Generative Adversarial Networks
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GANs are a powerful class of deep generative models based on the

simultaneous training of two neural networks:

We want that D optimally discriminates on the origin of the two samples.

Simultaneously the training procedure for G is to maximize the probability

of D making a mistake.

Generative Adversarial Networks
Introduction

• Generator network (G) that produces synthetic data given some
noise source, belonging to the latent space

• Discriminator network (D) that distinguishes generator’s output from
true data, representing the reference space

This framework corresponds to a minimax two-player game.
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I. J. Goodfellow et al., “Generative Adversarial Networks”, arXiv:1406.2661.

https://arxiv.org/abs/1406.2661


Defining the loss function V(D,G) as follows

the minimax game can be written in this form:

A unique solution exists, with G recovering the training

data distribution and D equal to ½ everywhere.

Generative Adversarial Networks
Minimax two-player game

gen

disc

x

z
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I. J. Goodfellow et al., “Generative Adversarial Networks”, arXiv:1406.2661.

https://arxiv.org/abs/1406.2661


GANs suffer from many issues, particularly during training:

The training process is driven by the minimax game that represents an

optimization problem, and hence it is necessary to compute the gradient
with respect to the loss function.
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Generative Adversarial Networks
Training problems

• if imbalance between the two neural networks occurs, the system is
unable to learn

• generator and discriminator oscillating during training rather than
converging to a fixed point

• generator collapsing to produce only a single sample or a small
family of very similar samples

All the drawbacks listed above follow from the saturation of the

discriminator: D is so good in distinguishing the origin of the two samples

that G cannot learn anything because of the vanishing gradient.

M. Arjovsky and L. Bottou, “Towards Principled Methods for Training Generative Adversarial Networks”, arXiv:1701.04862.

https://arxiv.org/abs/1701.04862
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Generative Adversarial Networks
Wasserstein GAN

To avoid the vanishing gradient problem, one

should change the loss function, preferring a

metric capable to measure the distance between
two distributions.

A similar metric is the Wasserstein distance which
can provide the generator with information even

when the reference space is separated from the

generated one (saturation conditions).

Using the Wasserstein distance W(C,G), the discriminator D is replaced by

the critic C, a 1-lipschitz function which prevents from saturation:

Then, the minimax game becomes:

M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN”, arXiv:1701.07875.

https://arxiv.org/abs/1701.07875
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Generative Adversarial Networks
Unbiased sample gradients

Solving the minimax game requires to compute several gradients. Hence,

evaluating such gradients over the entire training sample is inefficient and

often impractical. What is typically done is to compute the various

gradients over small subsets named mini-batches.

A crucial feature in training GAN is that the loss

function value does not depend on the batch

size chosen to compute gradients: the unbiased

sample gradients condition.

Despite its good properties, the Wasserstein

distance has gradients that depend on the

mini-batch choice.

To ensure the unbiased sample gradients condition, one should use the

Cramér distance, a metric similar to W(C, G) but with stricter hypothesis
for the critic C.

M. G. Bellemare et al., “The Cramer Distance as a Solution to Biased Wasserstein Gradients”, arXiv:1705.10743.

https://arxiv.org/abs/1705.10743
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Generative Adversarial Networks
Cramér GAN

Using the energy distance (multivariate generalization of the Cramér
distance) as loss function, one can make more stable the training

process, and ensure that gradients are independent of the batch size.

The energy distance is defined as follows

Where the critic fh is a function absolutely continuous with gradient norm

less than one:

The map h is the output of the discriminator network, one can derive the

critic from. Then, the minimax game becomes:

≈ 0

M. G. Bellemare et al., “The Cramer Distance as a Solution to Biased Wasserstein Gradients”, arXiv:1705.10743.

https://arxiv.org/abs/1705.10743
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Generative Adversarial Networks
Conditional GAN

GANs provide an easy extension to the

conditional form. Considering a training
sample composed by multi-variable

elements, we can imagine to split the

variables into:

• variables whose distributions are

the goal of the generator (Y)

• variables that simply conditions the

generator outputs (X)

The generator task remains that of

reproducing synthetic data, but now the

conditional space is joint to the latent
one (noise source R) in order to pursue

this goal.

M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets”, arXiv:1411.1784.

https://arxiv.org/abs/1411.1784
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GANs for Particle Identification
Generative models

The generator network can be used effectively for simulation, modelling

the high-level response of the Particle Identification system of LHCb.

Momentum

Pseudorapidity

nTracks

noise

RICH
DLL

MUON
Likelihood

Global PID
Combined variables

We expect that the PID response depends on the kinematics of the

traversing particles and on the detector occupancy. Hence, this

information must be provided to the generative models (conditional
GANs) in order to produce faithful synthetic sample.
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GANs for Particle Identification
Training data

Moreover, such generative models should be trained over a data sample

containing only the corresponding particle species. To this end, the

training procedure is performed using calibration samples collected in
2016. Despite the calibration data are selected by exclusive trigger lines,

this samples can still have some residual background that should be
removed to allow the generator to correctly model the PID system.

We also expect that each PID sub-detector behaves differently for the
various species of long-lived particles (μ, π, K, p). Hence, it is necessary to

build generative models for each particle in order to parameterize the

different behaviours.

Lastly, to stabilize the training process, all the generative models should

be trained through Cramér GAN systems, ensuring non-zero and
unbiased gradients.



GANs for Particle Identification
Background subtraction (1/2)

sPlot technique
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M. Pivk and F. R. Le Diberder, “sPlot: A Statistical Tool to Unfold Data Distributions”, arXiv:physics/0402083.

https://arxiv.org/abs/physics/0402083
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GANs for Particle Identification
Background subtraction (2/2)

Consider a dataset characterized by a discriminating variable x and a

variable of interest y, and composed as the mixture of two components:

signal and background, described by fsig(x,y) and fbkg(x,y).

A similar strategy allows to train GAN systems over data samples with

residual background: it is enough to replace the generic expression with
the loss function chosen, such as the energy distance ε.

The sPlot technique allows to infer the marginal distribution of fsig(x,y) with
respect to y known the one with respect to x, from which it is possible to

extract a set of sWeights.

Given a set of contaminated data and a generic expression F that

depends on the variable of interest, using sWeights allows to extract the
signal contribution of F on average.



Pion track candidates
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GANs for Particle Identification
Model validation

Kaon track candidates
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GANs for Particle Identification
Generated sample quality

Even if the loss function measures the distance between the target

distributions and the generated ones, it cannot be used to validate the

models since its judgement is clouded by the competition between the

two players of the minimax game.

Introducing a third independent player is the solution: the idea is to exploit

the output of a robust algorithm trained to distinguish the reference data
from the synthetic one.

Score values for three different models

Failed: KS = 1.00

Perfect: KS = 0.00

Quality

of the

Generative

Model



Integration of GAN models 

within the LHCb Simulation
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The LHCb experiment
Ultra-Fast Simulation frameworks

Ultra-Fast Simulation frameworks

All the simulation software, in order to

be used by the Collaboration, should

be interfaced with Gaudi, a software
framework developed to allow running

LHCb applications within a highly

parallel environment.

Lamarr, the official Ultra-Fast Simulation
framework of LHCb, directly produces

simulated samples in the correct data

format for LHCb applications.

Matteo Barbetti
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Mambah is a generic framework
designed for High Energy Physics

applications. It needs an external

software (Ficino) to convert its
databases into LHCb data formats.



The Mambah framework
The mambah.sim package
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Generator Decay tool

Generator phase

Efficiency Resolution

Reconstruction process

Particle Identification system

Detector responses

Data organization, database management

and algorithm configuration make Mambah

the perfect starting point to build an efficient
simulation framework named mambah.sim.

The mambah.sim module provides a set of

useful classes and tools to simulate the

particle decays together with the detector
responses.

Mambah is a new python framework

designed with a batch-grained paradigm

and represented within relational databases.

Mambah provides a complete set of

functions to access the particles and the
vertices composing the decay trees in the
event.
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The Mambah framework
Particle Identification

Momentum

Pseudorapidity

nTracks

noise

RICH
DLL

MUON
Likelihood

Global PID
Combined variables

The reconstruction process provides the track kinematics parameters as
“expected” from the tracking system. In addition, mambah.sim allows to

parameterize the detector occupancy (nTracks) extracting a random
number from the corresponding distribution for the decay I000000000.

Finally, the high-level PID responses can be obtained feeding the

generative models previously trained with the available parameters. It
should be noted that Mambah provides powerful methods to compute

efficiently the following chain of neural networks.
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The Mambah framework
Framework validation (1/3)

In order to validate the Mambah framework, a decay channel different
from the one used to train the generative models was chosen:

≠

TrainingValidation

It is a non-trivial decay sensitive to several aspects of the simulation:

• semileptonic decay whose dynamic should be treated by EvtGen

• decay channel contains all the charged stable particles that need 
parameterizations

• decay channel belonging to calibration data to select pure
samples of proton

• decay channel different from the ones used to train GAN systems

Proton:
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The Mambah framework
Framework validation (2/3)
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The Mambah framework
Framework validation (3/3)

Momentum Transverse momentum Pseudorapidity

Proton kinematics

Momentum VS 

ε [ProbNNp > 0.6]
Momentum VS 

ε [ProbNNp > 0.8]

Momentum VS 
ε [ProbNNp > 0.95]

Efficiency of proton PID requirements



Conclusion
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• Starting from Run 3, the LHCb Upgrade detector will increase

significantly the collected data, allowing to reach unprecedent

accuracy in heavy flavour physics studies

• To this end, it is crucial to develop and implement faster strategies than
the Full Simulation to produce simulated samples

• Among Ultra-Fast Simulation, GAN systems have proved to be very
promising to parameterize the high-level detector response, especially

for the PID system of LHCb

• Neural networks trained by a conditional minimax game are able to

reproduce effectively the probability distributions of the Global PID
variables

• These generative models can be used within a new simulation
framework named mambah.sim able to evaluate efficiently several

computational graphs and to produce huge simulated samples

consuming much less computing resources
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Backup
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The LHCb experiment
Production angles of b-hadrons
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Particle Identification variables
Muon system

MuonMuLL: the cumulative of the red D2 distribution

MuonBkgLL: the cumulative of the blue D2 distribution
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Particle Identification performance
Decay modes of calibration samples



The LHCb experiment
The old and new Trigger
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LHC Run 2 LHC Run 3
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The LHCb experiment
Upgrades



The LHCb experiment
Size of simulated samples
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The LHCb experiment
Data flow
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The LHCb experiment
The new simulation paradigm
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Deep Learning
Perceptron and Multilayer Perceptron
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Deep Learning
Activation functions
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Step:

Sigmoid:

Leaky ReLU:

ReLU:



a) Minimax game near convergence: Pg is similar to Pr and D is a partially

accurate classifier.

b) The D network is trained to discriminate samples from data,
converging to optimality.

c) After an update of G, gradient of D has driven G(z) to flow to region

that are more likely to be classified as data.

d) After several steps of training, they will reach a point at witch both

cannot improve because the discriminator is unable to differentiate
between the two distributions.

a b c d

Generative Adversarial Networks
Pedagogical explanation

I. J. Goodfellow et al., “Generative Adversarial Networks”, arXiv:1406.2661.
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Solving the minimax game with respect to D, we obtain

where D* indicates the optimal discriminator:

It’s easily to demonstrate that V(D*,G) is related to the Jensen-Shannon

divergence, as follows

Generative Adversarial Networks
Optimal discriminator

I. J. Goodfellow et al., “Generative Adversarial Networks”, arXiv:1406.2661.
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Then, the minimax game corresponds to minimize the JS divergence:

https://arxiv.org/abs/1406.2661


Loss function
Kullback-Leibler divergence
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The Kullback–Leibler divergence (also called relative entropy) is a
measure of how one probability distribution is different from a second,

reference probability distribution.



Loss function
Jensen-Shannon divergence
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The Jensen–Shannon divergence is a method of measuring the similarity
between two probability distributions.



Empirically, if we train D till convergence, the JS divergence between Pr

and Pg is maxed out. The only way this can happen is if the supports of

distributions are disjoint or lie in low dimensional manifolds. In these
hypothesis we can demonstrate that a perfect discriminator always exists.

PERFECT DISCRIMINATOR

A perfect discriminator has zero gradient almost everywhere on the union
of sets containing Pr and Pg supports.

M. Arjovsky and L. Bottou, “Towards Principled Methods for Training Generative Adversarial Networks”, arXiv:1701.04862.

Generative Adversarial Networks
Perfect discriminator
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Typically, the divergences which GANs minimize are not continuous with

respect to generator’s parameters θ. This allows the existence of the

perfect discriminator D* for which the gradient on the generator

vanishes. If we consider an approximation D that distances ε from D*, we
can prove what follows:

As our discriminator gets better, the gradient of the generator vanishes. In

other words, either our updates to the discriminator will be inaccurate, or

they will vanish.

M. Arjovsky and L. Bottou, “Towards Principled Methods for Training Generative Adversarial Networks”, arXiv:1701.04862.

Generative Adversarial Networks
Vanishing gradient
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There is something we can do to break our gradient problem: adding

continuous noise to both discriminator and generator. This move allows to

learn thanks to non-zero gradient of the generator. However, it’s now
proportional to the gradient of noisy JS divergence:

This variant of JS divergence measures a similarity between the two noisy

distribution and isn’t an intrinsic measure of Pr and Pg. Luckily, using

Wasserstein metric we can solve this problem.

M. Arjovsky and L. Bottou, “Towards Principled Methods for Training Generative Adversarial Networks”, arXiv:1701.04862.
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Generative Adversarial Networks
Noise insertion

https://arxiv.org/abs/1701.04862


Generative Adversarial Networks
Unbiased sample gradients

M. G. Bellemare et al., “The Cramer Distance as a Solution to Biased Wasserstein Gradients”, arXiv:1705.10743.
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https://arxiv.org/abs/1705.10743
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GANs for Particle Identification 
Decision Trees (1/2)

max_depth = 5

max_leaf_nodes = 14

Regularization
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GANs for Particle Identification 
Decision Trees (2/2)
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KS = 0.00 KS = 0.17 KS = 0.92

GANs for Particle Identification
Scoring method



GANs for Particle Identification
Learning curves
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GANs for Particle Identification
Learning rate tuning (1/2)
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GANs for Particle Identification
Learning rate tuning (2/2)
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GANs for Particle Identification
Data pre-processing



GANs for Particle Identification
Cramér distance VS cross-entropy 
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GANs for Particle Identification
Model validation (1/7)
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Pion track Kaon track



GANs for Particle Identification
Model validation (2/7)
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Muon track Proton track



GANs for Particle Identification
Model validation (3/7)

Matteo Barbetti
12.06.2020

Muon track Proton track



GANs for Particle Identification
Model validation (4/7)
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Muon track Proton track



GANs for Particle Identification
Model validation (5/7)
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Muon track Proton track



GANs for Particle Identification
Model validation (6/7)
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Muon track Proton track



GANs for Particle Identification
Model validation (7/7)

Matteo Barbetti
12.06.2020

Pion track

Kaon track
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The Mambah framework
EventStore example



The Mambah framework
Generation phase

Generator

Decay tool

The first step of the generation phase is to produce
particles that include heavy and resonant states,
never directly detectable.

To date, mambah.sim implements only the particle-gun

approach, namely it produces a single heavy flavour
hadron (beauty or charm) per event according to
predefined kinematic distributions.

The second step of the generation phase is to simulate
the decay chain until long-lived final states.

The mambah.sim module implements two models to

describe the sequence of decays:

• zfit/phasespace, a lightning fast package to

simulate phase space decays

• EvtGen, a celebrated package to simulate the
physics of heavy flavour decays

Charmed Hadrons

Beauty Hadrons
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The Mambah framework
Reconstruction process

Efficiency model

Resolution effects

The particles produced at the generator-level are
stored within the Monte Carlo databases together
with all the kinematic information.

Among all the particles, only the long-lived ones are
passed through a filter function (a Mambah tool)
parameterizing the reconstruction efficiency. The
particles survived the efficiency selection are store
within the reconstruction databases.

The efficiency correction is modelled by a trained
neural network taking as inputs the momentum
components and the origin vertex coordinates.

The reconstructed particles are passed through
another Mambah tool which performs the smearing
of the track momentum components. The smearing
function is modelled by a trained neural network
taking as inputs the momentum components.

Efficiency

Resolution

Matteo Barbetti
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Lamarr

Simulation frameworks
Lamarr VS mamba.sim (1/3)
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mamba.sim



Simulation frameworks
Lamarr VS mamba.sim (2/3)
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mamba.simLamarr
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Lamarr

mamba.sim

Simulation frameworks
Lamarr VS mamba.sim (3/3)
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The Mambah framework
Single-thread CPU cost



The Mambah framework
Framework validation (1/2)
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Probability computed by a

neural network that the tracks

are obtained from a random

combination of hits in the

tracker rather than to a real

particle depositing energy in

the detector.

ghostProbability

Distance from the primary

vertex to the reconstructed

momentum of daughters: in

this case, the proton impact

parameter is reported and, as

expected, it is inconsistent

with the primary vertex.

Impact Parameter

Measure of the goodness of

track parameters: in this case,

the covariance matrix is

parameterized as a function

of the momentum only that is

unable, of reproducing data

distribution.

Covariance matrix



The Mambah framework
Framework validation (2/2)
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Pion track Kaon track


