

20.09.2017

Studio delle risonanze di stati di *charmonium* nei decadimenti $B^+ \rightarrow p\bar{p}K^+$ e $B^+ \rightarrow p\bar{p}\gamma K^+$ con l'esperimento LHCb al CERN

Relatore: Dott. Lucio Anderlini

Correlatore: Prof. Giuseppe Latino Candidato: Matteo Barbetti

Indice

- Introduzione al Modello Standard
- LHC e l'esperimento LHCb
- Studio del decadimento $B^+ \to p \bar{p} K^+$
- Studi preliminari per la ricerca del decadimento $B^+ \rightarrow h_c K^+$

Introduzione al Modello Standard

Il Modello Standard (MS) è un **teoria quantistica dei campi** che descrive le particelle elementari e le loro interazioni.

- La materia è costituita da **12** *fermioni*, suddivisi in 6 *leptoni* (*e*, v_e , μ , v_{μ} , τ , v_{τ}) e 6 *quark* (*u*, *d*, *c*, *s*, *t*, *b*).
- I fermioni interagiscono attraverso **quattro forze fondamentali** descritte, all'interno del MS, in termini di scambio di *bosoni* (g, γ , W^{\pm} , Z^{0}).

Questa tesi è incentrata sullo studio di **stati legati** composti dal quark *charm* e prodotti dal decadimento di *adroni-b*, cioè particelle contenenti il quark *bottom* (come il mesone B^+).

Standard Model of Elementary Particles

Le simmetrie in fisica

La simmetria è una proprietà molto importante in fisica.

All'invarianza delle equazioni sotto trasformazione è possibile associare delle **leggi di conservazione**.

In questa tesi giocano un ruolo fondamentale le seguenti simmetrie discrete:

- Simmetria P inversione spaziale •
- Simmetria C coniugazione di carica •
- **Simmetria T** inversione temporale

Trasformazione P

Le tre direzioni spaziali sono tutte invertite contemporaneamente.

Trasformazione T

La direzione del tempo (e quindi del moto) è invertita.

Trasformazione C

Tutte le particelle sono trasformate in antiparticelle e viceversa.

Introduzione al Modello Standard

Stati legati in QCD

L'interazione elettromagnetica permette al protone e all'elettrone di formare uno stato legato: l'"atomo d'idrogeno". Anche i quark $q \in \overline{q}$ possono formare uno stato legato grazie all'interazione forte: il **quarkonium**.

I diversi livelli energetici dell'atomo di idrogeno sono associati a valori distinti dei numeri quantici. Allo stesso modo, lo spettro del *quarkonium* è dovuto a operatori differenti:

- *L* momento angolare orbitale
- S momento angolare di spin
- *J* momento angolare totale
- **P** inversione spaziale
- *C* coniugazione di carica

- Interazione coulombiana: $V(r) = -\frac{\alpha \hbar c}{r}$
- Interazione forte: $V(r) = -\frac{4}{3}\frac{\alpha_s \hbar c}{r} + F_0 r$

L	S	J	P	C	$\int J^{PC}$	Stato
0	0	0	-1	+1	0-+	$^{1}S_{0}$
0	1	1	-1	-1	1	$^{3}S_{1}$
1	0	1	+1	-1	1^{+-}	$^{1}P_{1}$
1	1	0	+1	+1	0^{++}	$^{3}P_{0}$
1	1	1	+1	+1	1^{++}	$^{3}P_{1}$
1	1	2	+1	+1	2^{++}	$^{3}P_{2}$

Charmonium

Questa tesi è focalizzata sullo studio del *charmonium* caratterizzato dallo spettro riportato in figura.

Le **regole di selezione** delle transizioni tra gli stati $c\bar{c}$ sono date dalla conservazione dei numeri quantici nel processo di decadimento:

- J stato iniziale = J stato finale
- *P* stato iniziale = *P* stato finale
- *C* stato iniziale = *C* stato finale

Un esempio è dato da:

$$\chi_{c1} \to J/\psi \gamma \checkmark$$

 $\chi_{c1} \to \eta_c \gamma \mathbf{X}$

Decadimenti studiati in questa tesi

In questa tesi è stato analizzato un canale di decadimento già conosciuto dall'esperimento LHCb sfruttando però un campione di dati non ancora analizzato:

Canale di studio
$$\rightarrow \quad B^+ \rightarrow (c \bar{c}) K^+ \ {\rm con} \ \ (c \bar{c}) \rightarrow p \bar{p}$$

Il suo studio permette di caratterizzare la massa invariante $p\bar{p}K^+$ necessaria per analizzare canali ai quali si aggiunge un fotone γ .

Le catene di decadimento riportate nel seguito **separano** gli stati $h_c \in \chi_{c1}$ offrendo un buon supporto per la ricerca di h_c :

Canale di segnale
$$\rightarrow B^+ \rightarrow h_c K^+$$
 con $h_c \rightarrow \eta_c \gamma \in \eta_c \rightarrow p\bar{p}$
Canale di controllo $\rightarrow B^+ \rightarrow \chi_{c1} K^+$ con $\chi_{c1} \rightarrow J/\psi \gamma \in J/\psi \rightarrow p\bar{p}$

Introduzione al Modello Standard

LHC e l'esperimento LHCb

Il *Large Hadron Collider* (LHC) è il più grande e potente acceleratore al mondo: acceso per la prima volta nel 2008, rimane l'ultima aggiunta al complesso degli acceleratori del **CERN**.

LHC è costituito da un anello di 27 km in cui corrono due fasci di protoni in direzioni opposte. Questi vengono fatti incrociare in **quattro punti** lungo l'anello, dove sono situati i **quattro esperimenti principali**: ALICE, ATLAS, CMS e LHCb.

L'esperimento LHCb

LHCb è uno **spettrometro di massa** *in avanti* specializzato nella rivelazione di particelle a piccoli angoli (15 mrad $< \theta < 250$ mrad).

L'esperimento LHCb può essere suddiviso in:

- 1. Sistema di tracciatura
 - II VELO
 - Il magnete dipolare
 - Le stazioni di tracciatura

2. Sistema d'identificazione delle particelle

- I rivelatori RICH
- I calorimetri
- Il sistema per muoni

LHCb 2015 Trigger Diagram

Trigger e presa dati

Il *trigger* è l'ultima componente del processo di misura: attraverso un sistema di selezione *hardware* e *software* permette di ridurre il flusso di dati rendendone possibile l'immagazzinamento.

Studio del decadimento $B^+ \to p \bar{p} K^+$

Lo scopo dell'analisi è studiare lo spettro degli stati di *charmonium* ottenuto dal canale di decadimento:

L'esperienza maturata dalla collaborazione LHCb

alla base della mia analisi dei dati di Run 2.

nell'analisi di questo canale con dati di Run 1 è stata

$$B^+ \to (c \bar{c}) K^+ \ {\rm con} \ \ (c \bar{c}) \to p \bar{p}$$

2015 $\sqrt{s} = 13 \text{ TeV}$ $\mathcal{L}_{int} = 0.33 \text{ fb}^{-1}$ 2016 $\sqrt{s} = 13 \text{ TeV}$ $\mathcal{L}_{int} = 1.67 \text{ fb}^{-1}$

Identificazione del decadimento $B^+ ightarrow p \bar{p} K^+$

Se la selezione del campione di eventi è corretta, ci aspettiamo di osservare il **segnale** di B^+ nel grafico della massa invariante $p\bar{p}K^+$.

I contributi indesiderati in $m_{p\bar{p}K^+}$ possono essere **rimossi**:

- Il fondo da eventi parzialmente ricostruiti può essere eliminato con un semplice taglio
- Il fondo combinatorio è sottratto statisticamente dalla tecnica *sPlot*¹

¹ La tecnica *sPlot* permette di rimuovere statisticamente il fondo combinatorio nota la distribuzione di una variabile discriminante.

Modelli statistici per la massa invariante $p\overline{p}$

La natura **risonante** degli stati di *charmonium* si manifesta con eccessi nella distribuzione di $m_{p\bar{p}}$. La teoria prevede che questi seguano la **distribuzione relativistica di Breit-Wigner** parametrizzabile in forma complessa da:

Per descrivere la distribuzione delle combinazioni $p\bar{p}$ va considerato anche il contributo dovuto alla **risoluzione** dell'esperimento:

Il modello statistico per la distribuzione di eventi è dato da:

$$pdf = |\mathcal{A}_{RBW}|^2 \otimes g_{ris}$$

Studio del decadimento $B^+ \to p \bar{p} K^+$

Analisi della massa invariante $p\overline{p}$ (1/2)

Le combinazioni $p\bar{p}$ sono in ampia parte dovute al **canale di decadimento non risonante**.

Stati $c\bar{c} \operatorname{con} \Gamma \ll \sigma_{ris}$ possono essere descritti con la **sola** funzione di risoluzione. La distribuzione di $m_{p\bar{p}}$ per gli altri stati riproduce la forma dell'ampiezza relativistica di Breit-Wigner opportunatamente **convoluta**.

La risoluzione sperimentale per l'intervallo di massa invariante d'interesse è $\sigma_{ris} \simeq 5 \text{ MeV}/c^2$.

- $J/\psi \rightarrow$ gaussiana di risoluzione
- $\psi(2S) \rightarrow$ gaussiana di risoluzione
- $\chi_{c1} \rightarrow$ gaussiana di risoluzione
- $\chi_{c0} \rightarrow$ gaussiana di risoluzione
- $\eta_c(2S) \rightarrow \text{RBW} + \text{gaussiana di risoluzione}$
- $\eta_c \rightarrow \text{RBW} + \text{gaussiana di risoluzione} + \text{interferenza}$

Stato $c\overline{c}$	$\Gamma \; [{ m Mev}/c^2]$
η_c	31.8 ± 0.8
J/ψ	0.0929 ± 0.0028
χ_{c0}	10.5 ± 0.6
χ_{c1}	0.84 ± 0.04
$\eta_c(2S)$	$11.3^{+3.2}_{-2.9}$
$\psi(2S)$	0.296 ± 0.008

Medie mondiali

Studio del decadimento $B^+ \to p \bar{p} K^+$

Studio del decadimento $B^+ \rightarrow p \bar{p} K^+$

Interferenza con lo spazio delle fasi non risonante

La distribuzione di $m_{p\bar{p}}$ presenta un importante contributo dovuto al **canale non risonante**:

 $B^+ \to p\bar{p}K^+$

L'interferenza tra il canale risonante e lo spazio delle fasi non risonante avviene tra coppie $p\bar{p}$ aventi i medesimi numeri quantici.

Tale fenomeno può essere parametrizzato a partire da:

$$f_{nr} = \mathcal{N} e^{-m_{p\bar{p}}/a}$$

$$\mathcal{A}_{tot} = \mathcal{A}_{RBW} + \mathcal{A}_{nr} \implies |\mathcal{A}_{tot}|^2 = |\mathcal{A}_{RBW} + \mathcal{A}_{nr}|^2 = f_{RBW} + f_{nr} + \Phi_{int}$$

$$pdf = |\mathcal{A}_{tot}|^2 \otimes g_{ris}$$

Interferenza con lo spazio delle fasi non risonante

$$pdf = |\mathcal{A}_{tot}|^2 \otimes g_{ris}$$

Studio del decadimento $B^+ \rightarrow p \bar{p} K^+$

Conferma del decadimento $\eta_c(2S) ightarrow par{p}$ (1/2)

Conferma del decadimento $\eta_c(2S) ightarrow p ar p$ (2/2)

Con lo studio dello spettro di $c\bar{c}$, la collaborazione LHCb ha osservato lo stato $\eta_c(2S)$ per la **prima volta** nel decadimento:

$$\eta_c(2S) \to p\bar{p}$$

In quest'analisi è possibile **confermare l'osservazione** ottenuta dai dati di *Run 1* anche in quelli relativi al *Run 2*.

Introduciamo la **significanza statistica** che descrive la probabilità che il segnale osservato sia prodotto da una fluttuazione del fondo non risonante:

$$s_0 = \sqrt{2 \ln \left[\frac{\mathcal{L}(\mathbf{H}_{sig+bkg})}{\mathcal{L}(\mathbf{H}_{bkg})} \right]}$$

È stato prodotto un campione di 24000 pseudo-esperimenti in ipotesi di solo fondo e in nessun di questi si è raggiunta $s_0 = 6\sigma$: anche estrapolando la distribuzione della significanza la probabilità è **estremamente bassa** (10⁻¹⁷).

Studi preliminari per la ricerca del canale $B^+ \rightarrow h_c K^+$

Dallo studio dello spettro del *charmonium* ottenuto dal canale di decadimento $B^+ \rightarrow (c\bar{c})K^+ \operatorname{con}(c\bar{c}) \rightarrow p\bar{p}$ non si hanno evidenze dello stato h_c .

Decadimenti esclusivi di adroni-*b* in h_c non sono mai stati osservati, nonostante se ne abbiano alcune indicazioni.

Una delle maggiori difficoltà nella ricerca dello stato h_c è l'**estrema vicinanza** della sua massa a quella dello stato χ_{c1} che produce un fondo difficile da rimuovere.

Stato $c\bar{c}$	Massa [MeV/ c^2]	$\Gamma \; [{ m MeV}/c^2]$
$\chi_{c1} \ h_c$	3510.66 ± 0.07 3525.38 ± 0.11	$0.84 \pm 0.04 \\ 0.7 \pm 0.4$
	Medie mondiali	

L'idea originale di questa tesi è proporre lo studio di due catene di decadimento che permettano di separare, grazie alla **parità C**, il contributo dovuto a h_c da χ_{c1} .

Canale di segnale
$$\rightarrow B^+ \rightarrow h_c K^+$$
 con $h_c \rightarrow \eta_c \gamma \in \eta_c \rightarrow p\bar{p}$
Canale di controllo $\rightarrow B^+ \rightarrow \chi_{c1} K^+$ con $\chi_{c1} \rightarrow J/\psi \gamma \in J/\psi \rightarrow p\bar{p}$

Studi preliminari per la ricerca del canale $B^+
ightarrow h_c K^+$

Motivazione scientifica

Studi preliminari per la ricerca del canale $~B^+
ightarrow h_c K^+$

Canale di controllo in $m_{p\overline{p}}$ e $m_{p\overline{p}\gamma}$

Una delle funzioni del canale di controllo è verificare che la selezione del campione di eventi sia ottimizzata.

Per le combinazioni $p\bar{p}$ ci aspettiamo di osservare un segnale puro ed **abbondante** dovuto a J/ψ (non provenienti dal solo canale di controllo). Nella distribuzione $m_{p\bar{p}\gamma}$ è atteso il segnale dello stato χ_{c1} che si aggiunge ad un **fondo importante** (molti fotoni di bassa energia).

Studi preliminari per la ricerca del canale $~B^+
ightarrow h_c K^+$

Canale di controllo in $m_{p\overline{p}\gamma K^+}$

L'effettiva presenza del canale di controllo necessità di un'ultima verifica: la presenza del **segnale** di B^+ nella distribuzione della massa invariante $p\bar{p}\gamma K^+$.

Studi preliminari per la ricerca del canale $~B^+
ightarrow h_c K^+$

Canale di segnale in $m_{p\overline{p}\gamma K^+}$

Un procedimento analogo si può ripetere per il canale di segnale che **non** dà evidenze di alcun eccesso dovuto a B^+ in $m_{p\bar{p}\gamma K^+}$.

È necessario estendere l'analisi **incrementando la statistica** (dati di *Run 1* e del 2017) e sfruttando un'**analisi multivariata** per una strategia di selezione più raffinata. Non si hanno quindi evidenze del canale di segnale:

$$B^+ o h_c K^+$$
 con $h_c o \eta_c \gamma$ e $\eta_c o p \bar p$

Conclusioni

- Lo studio del decadimento $B^+ \to p\bar{p}K^+$ ha permesso di caratterizzare efficacemente parte dello spettro del *charmonium* con un modello completo degli effetti d'interferenza.
- L'osservazione del decadimento $\eta_c(2S) \rightarrow p\bar{p}$ è stata confermata mediante lo studio di 24000 pseudo-esperimenti per escludere eventuali fluttuazioni del fondo non risonante.
- Gli studi preliminari per la ricerca di $B^+ \to h_c K^+$ hanno evidenziato l'effettiva presenza del canale di controllo: $B^+ \to \chi_{c1} K^+$ con $\chi_{c1} \to J/\psi \gamma$ e $J/\psi \to p\bar{p}$.
- Non si hanno evidenze per il canale di segnale la cui ricerca può essere implementata apportando altra statistica e impiegando un'analisi multivariata.
- Per tale ragione è stata inoltrata una richiesta ufficiale di produzione Monte Carlo alla collaborazione LHCb che sarà pronta entro fine anno.

Grazie per l'attenzione

Backup slide

Decadimenti e vita media

«Una delle proprietà più suggestive delle particelle elementari e dei loro stati legati è la tendenza a decadere in particelle più leggere.» [D. Griffiths, *Introduction to Elementary Particles*]

Sia *N* il numero di particelle e dN la loro variazione in un tempo dt, ha senso introdurre il **tasso di decadimento** Γ/\hbar come

con Γ detta **larghezza di decadimento**.

Introduciamo inoltre:

- La vita media $\tau = \frac{\hbar}{\Gamma}$
- Il *brancing ratio* $\mathcal{B}(X \to YZ)$ definito come la probabilità che il decadimento di X avvenga secondo il canale $X \to YZ$

Esperimento di Cronin e Fitch

Fino agli anni '60 si riteneva che la simmetria CP fosse conservata. Fu un esperimento del 1964 ad opera di James Cronin e Vol Fitch a dimostrare la **violazione di CP**.

L'esperimento era basato sul decadimento del kaone neutro per il quale si distinguevano due stati distinti: $K_1 \in K_2$ tali che

$$\begin{array}{ccc} K_1 \rightarrow 2\pi & \mathrm{e} & K_2 \rightarrow 3\pi \\ & & & \\ \mathrm{CP}=+1 & & & \\ & & & \\ \mathrm{CP}=-1 \end{array} \end{array}$$

Cronin e Fitch sfruttarono un fascio collimato di K_2 per misurare l'angolo θ compreso tra il fascio di kaoni e la somma degli impulsi dei pioni misurati da due spettrometri. Trovarono quindi evidenze per un segnale compatibile con $\theta = 0$ che dimostrava il **decadimento in due pioni** di K_2 e la mancata conservazione di CP.

Backup slide

Regola di OZI

Nello spettro di *charmonium* gioca un ruolo fondamentale la soglia $2M_D \simeq 3730 \text{ MeV}/c^2$ grazie alla Regola di OZI.

Per stati $c\bar{c}$ al di sopra della soglia cinematica si apre un **canale di decadimento privilegiato** rispetto a quelli in cui la corrente fermionica è interrotta.

Stati $c\bar{c}$ con massa superiore alla soglia $2M_D$ hanno un'altissima probabilità di decadere in $D\overline{D}$ determinando un allargamento di Γ rispetto agli stati **al di sotto della soglia cinematica**.

Singoletto di colore

La **cromodinamica quantistica** (QCD) introduce tre nuovi gradi di libertà nello spazio delle particelle, la **carica di colore**: blu, verde e rosso.

Una delle conseguenze della QCD è il **confinamento di colore** secondo cui è impossibile osservare in natura stati che non costituiscono un **singoletto di colore**.

Formano un singoletto di colore le terne:

- bvr
- bvr

o le coppie:

- b<u>b</u>
- $v\overline{v}$
- rr

Più singoletti di colore costituiscono ancora un singoletto. Si possono avere solo le seguenti combinazioni:

 $(3q)^p(q\bar{q})^n \operatorname{con} p, n \in \mathbb{N}$

LHCb: spettrometro di massa in avanti

LHCb è un rivelatore **a singolo braccio** i cui parametri geometrici sono ottimizzati per lo studio di adroni contenenti quark pesanti come B^+ .

L'esperimento è in grado di rivelare particelle entro un angolo polare θ compreso tra 15 ÷ 250 mrad.

Le sue caratteristiche geometriche gli permettono di raggiungere un valore di *accettanza geometrica* pari al 27% per la produzione di coppie $b\overline{b}$.

Valori maggiori di accettanza sono difficilmente raggiungibili dato che gran parte delle particelle è prodotta ad angoli ancora più piccoli, in una regione dominata, a LHC, dalla presenza dei **fasci di protoni** che danneggerebbero un eventuale rivelatore.

Selezione *offline* per il canale $B^+ \to p \bar{p} K^+$

Selezione offline	Breve descrizione	
${ m P~di}~p,ar{p} \in K^+ > 1500~{ m MeV}/c$	Particelle in accettanza	
Somma dei P di $p, ar{p} \in K^+ > 20000 { m MeV}/c$	Particelle in accettanza	
${\rm PT~di}~B^+ > 1000~{\rm MeV}/c$	Particelle in accettanza	
${ m PT}~{ m di}~car{c}>2000~{ m MeV}/c$	Particelle in accettanza	
${ m PT}~{ m di}~p,~ar{p} \in K^+ > 100~{ m MeV}/c$	Particelle in accettanza	
Somma scalare dei PT di p,\bar{p} e $K^+>4500~{\rm MeV}/c$	Particelle in accettanza	
$\max\{ ext{PT di } K^+, ext{PT di } p, ext{PT di } ar{p}\} > 1500 \ ext{MeV}/c$	Particelle in accettanza	
$(ProbNN p) { m per} p > 0.2$	PID	
$(ProbNN p) { m per} ar p > 0.2$	PID	
$(ProbNN \ K) \ { m per} \ K^+ > 0.2$	PID	
χ^2 di IP per $B^+ < 10$	Provenienza dal vertice primario	
χ^2 di IP per $p, \bar{p} \in K^+ > 1$	Traccia non dal vertice primario	
χ^2 del DTF per $B^+ < 12$	Provenienza dal vertice primario	
$\cos \theta \mathrm{di} B^+ > 0.99998$	Giusta direzione impulso	
$ \chi^2 { m \ con \ PV} - \chi^2 { m \ senza \ PV} > 500$	Tracce incompatibili con vertice primario	
$5000~{ m MeV}/c^2 < { m Massa}~{ m di}~B^+ < 5500~{ m MeV}/c^2$	Giusta massa invariante $p\bar{p}K^+$	

Parametrizzazioni delle distribuzioni in $m_{p\overline{p}K^+}$

Il contributo del **segnale di** B^+ è modellizzato con una somma pesata di due gaussiane aventi stesso valor medio μ e deviazioni standard σ_1 e σ_2 :

$$f_{B^+} = \frac{c}{\sqrt{2\pi\sigma_1^2}} \exp\left(-\frac{(m_{p\bar{p}K^+} - \mu)^2}{2\sigma_1^2}\right) + \frac{1 - c}{\sqrt{2\pi\sigma_2^2}} \exp\left(-\frac{(m_{p\bar{p}K^+} - \mu)^2}{2\sigma_2^2}\right)$$

Il contributo del fondo combinatorio è rappresentato dalla retta:

$$f_{cmb} = a + b \, m_{p\bar{p}K^+}$$

Il contributo del **fondo da eventi parzialmente ricostruiti** è descritto da:

$$f_{pc} = \frac{\mathcal{N}_{pc}}{1 + e^{(m_{p\bar{p}K^+} - m_0)/s}}$$

Il **modello statistico globale** impiegato per descrivere le distribuzioni in $m_{p\bar{p}K^+}$ è dunque il seguente:

$$f_{tot} = N_{sig} f_{B^+} + N_{bkg} \left[w_{pc} f_{pc} + (1 - w_{pc}) f_{cmb} \right]$$

Parametrizzazioni della distribuzione relativistica di Breit-Wigner (1/2)

La teoria prevede che **stati risonanti** siano descritti dalla distribuzione relativistica di Breit-Wigner.

Ne esistono **due diverse parametrizzazioni** riportare nel seguito in forma complessa:

$$\xi_{RBW}(m_{p\bar{p}}) = \frac{\sqrt{k}}{(m_{p\bar{p}}^2 - m_r^2)^2 + i m_{p\bar{p}}\Gamma}$$
(in blu)

$$\zeta_{RBW}(m_{p\bar{p}}) = \frac{\sqrt{k'}}{(m_{p\bar{p}}^2 - m_r^2)^2 + i \, m_r \Gamma}$$
 (in verde)

Come mostrato dalle figure, le due parametrizzazioni sono evidentemente **equivalenti** ai fini dell'analisi.

Backup slide

Parametrizzazioni della distribuzione relativistica di Breit-Wigner (2/2)

In blu è riportata la parametrizzazione utilizzata nell'analisi della massa $m_{p\bar{p}}$, mentre la scrittura alternativa è riportata in verde. Le linee rosse tratteggiate definiscono l'intervallo di valori entro cui può variare la parametrizzazione impiegata a causa dell'errore sulla larghezza Γ .

Quadro teorico di $b \to h_c$ anything

Guardando ai *branching ratio* del canale di segnale e di quello di controllo spicca la significativa **differenza** tra $\mathcal{B}(B^+ \to h_c K^+)$ e $\mathcal{B}(B^+ \to \chi_{c1} K^+)$.

Ciò è in contrasto con i modelli teorici che, pur con grandi incertezze, **predicono**:

 $\mathcal{B}(B^+ \to h_c K^+) \approx \mathcal{B}(B^+ \to \chi_{c0} K^+) = (1.50^{+0.15}_{-0.14}) \times 10^{-4}$

Dal modello ci si **attende** dunque un rapporto dei *branching ratio* dell'ordine di

$$\frac{\mathcal{B}(B^+ \to h_c K^+)}{\mathcal{B}(B^+ \to \chi_{c1} K^+)} \approx 0.3$$

Canale	Branching ratio
Segnale	$\mathcal{B}(B^+ \to h_c K^+) < 3.8 \times 10^{-5}$ $\mathcal{B}(h_c \to \eta_c \gamma) = (51 \pm 6)\%$ $\mathcal{B}(\eta_c \to p\bar{p}) = (1.50 \pm 0.16) \times 10^{-3}$
Controllo	$\mathcal{B}(B^+ \to \chi_{c1}K^+) = (4.79 \pm 0.23) \times 10^{-4}$ $\mathcal{B}(\chi_{c1} \to J/\psi\gamma) = (33.9 \pm 1.2)\%$ $\mathcal{B}(J/\psi \to p\bar{p}) = (2.120 \pm 0.029) \times 10^{-3}$

Medie mondiali

Simulazione dei decadimenti $B^+ ightarrow p \bar{p} \gamma K^+$

La misura del rapporto di *branching ratio* necessita della conoscenza dell'**efficienza di selezione e ricostruzione** delle catene di decadimento.

$$\mathcal{R} = rac{N_{h_c}}{N_{\chi_{c1}}} rac{\epsilon_{\chi_{c1}}}{\epsilon_{h_c}}$$

L'efficienza può essere ricavata a partire da un campione simulato Monte Carlo che produce dati per i soli canali d'interesse.

Una prima valutazione sulle efficienze dei canali di segnale e di controllo si può ottenere guardando alle simulazioni **senza** il contributo di rivelatore e di ricostruzione. Da queste si osserva che il rapporto delle efficienze necessita di correzioni rispetto al valore ideale (pari all'**unità**) a causa della differente distribuzione dell'**impulso del fotone**.

Backup slide

Preparazione e funzionamento del DecFile

Della produzione del campione simulato sono responsabili tre programmi:

- **PYTHIA** per simulare le collisioni *pp*
- EvtGen per simulare il decadimento di adroni-b e adroni-c
- Geant4 per simulare la risposta del rivelatore

Il *DecFile* è il file di configurazione di EvtGen per la simulazione dei canali d'interesse: si richiede cioè che le catene di decadimento di segnale e di controllo avvengano con un *branching ratio* del **100**%.

Il corretto funzionamento del *DecFile* si può verificare nelle medesime modalità descritte per campioni di dati reali: verificando la presenza dei contributi attesi (contributo di segnale in rosso e contributo di controllo in blu).

Selezione offline per il canale $B^+ \to p \bar{p} \gamma K^+$

Selezione offline	Breve descrizione	
${ m P~di}~p,ar{p}>10~{ m GeV}/c$	Particelle in accettanza	
${ m PT~di}~B^+ > 5.5~{ m GeV}/c$	Particelle in accettanza	
${ m PT}~{ m di}~car{c}>3.5~{ m GeV}/c$	Particelle in accettanza	
${ m PT~di}~\gamma > 800~{ m MeV}/c$	Particelle in accettanza	
γ non proveniente da π^0	Masse invarianti $\gamma\gamma$	
${ m CL}~{ m di}~\gamma>0.2$	Corretta ricostruzione del fotone	
$(ProbNN \ K) \ { m per} \ K^+ > 0.2$	PID	
χ^2 di IP per $K^+ > 9$	Traccia non dal vertice primario	
DTF a convergenza	Provenienza dal vertice primario	
χ^2 del DTF per $B^+ < 3.5$	Provenienza dal vertice primario	
$5200~{ m MeV}/c^2 < { m Massa}~{ m DTF}~{ m di}~B^+ < 5350~{ m MeV}/c^2$	Giusta massa invariante $p\bar{p}\gamma K^+$	
Massa DTF di $par{p}$ e $par{p}\gamma < 4000~{ m MeV}/c^2$	Giusta massa invariante $p\bar{p} e p\bar{p}\gamma$	
$ au { m di} \ B^+ > 3 imes 10^{-4} { m ~ns}$	Sufficiente tempo di volo	

J/ψ e χ_{c1} del canale di controllo

Il segnale puro e abbondante di J/ψ in $m_{p\bar{p}}$ **non** è dovuto al solo canale di controllo, ma presenta contributi anche da **altri** decadimenti. L'aggiunta del fotone **diminuisce** il contributo derivante da canali diversi da quello d'interesse, rivelando un eccesso dovuto a χ_{c1} in $m_{p\bar{p}}\gamma$.

Per verificare che il segnale di χ_{c1} sia quello dovuto al decadimento $\chi_{c1} \rightarrow J/\psi\gamma \operatorname{con} J/\psi \rightarrow p\bar{p}$ si riporta la massa invariante $p\bar{p}$ versus $p\bar{p}\gamma$. Dagli istogrammi si può osservare come l'eccesso in corrispondenza della massa di J/ψ in $m_{p\bar{p}}$ presenti un contributo importante in corrispondenza della massa di χ_{c1} in $m_{p\bar{p}}\gamma$.

Backup slide

Misura precisa di χ_{c1} e χ_{c2}

La collaborazione LHCb ha recentemente pubblicato (13 Settembre 2017) una misura ad **altissima risoluzione** degli stati risonanti $\chi_{c1} \in \chi_{c2}$.

Ciò è stato possibile analizzando la massa invariante delle combinazioni $J/\psi\mu^+\mu^-$ che ha permesso inoltre di osservare **per la prima volta** i decadimenti:

$$\chi_{c1} \to J/\psi \mu^+ \mu^-$$

$$\chi_{c2} \rightarrow J/\psi \mu^+ \mu^-$$

Test dell'universalità leptonica (1/2)

Una delle assunzioni del MS è l'universalità leptonica secondo cui elettroni, muoni e tauoni dovrebbero avere le **medesime proprietà** ed essere prodotti **in modo equivalente** nei decadimenti deboli (con le dovute correzioni legate alla differente massa).

Alla sessione aperta di <u>LHCC</u> (13 Settembre 2017), la collaborazione LHCb ha presentato i risultati di una **nuova misura** del rapporto di *branching ratio*:

$$\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi\tau^+\nu_\tau)}{\mathcal{B}(B_c^+ \to J/\psi\mu^+\nu_\mu)}$$

Data la differenza di massa tra $\tau e \mu$, la teoria predice che il rapporto di *branching ratio* debba differire dall'unità al più per 0.25 **contrariamente** a quanto misurato dall'esperimento LHCb.

Test dell'universalità leptonica (2/2)

La misura di LHCb si aggiunge a quella di altri esperimenti (come Belle e BaBar) che danno indizi sulla possibile **violazione dell'universalità leptonica** prevista dal MS.

Si aprono quindi scenari di *nuova fisica* che potrebbero includere l'introduzione di un **bosone di Higgs carico** (H^+) o una nuova famiglia di particelle chiamata *leptoquark* (LQ).